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Projection phase contrast microscopy with a hard x-ray nanofocused beam:
Defocus and contrast transfer
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We report a projection phase contrast microscopy experiment using hard x-ray pink beam undulator radia-
tion focused by an adaptive mirror system to 100-200 nm spot size. This source is used to illuminate a
lithographic test pattern with a well-controlled range of spatial frequencies. The oscillatory nature of the
contrast transfer function with source-to-sample distance in this holographic imaging scheme is quantified and
the validity of the weak phase object approximation is confirmed for the experimental conditions.
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I. INTRODUCTION

Holographic x-ray projection microscopy, based on the
principle of holography,' projection magnification,> and
Fresnel imaging,>* yields quantitative images of hard and
soft materials in electron density” or magnetization® contrast
at the nanoscale. An extension from two-dimensional (2D)
projection images to three-dimensional (3D) data sets by ho-
lographic tomography is relatively straightforward. By defi-
nition, holography makes use of the interference terms
2 Re[¢,if,] between a scattered wave i, and a reference
wave ¢,. Hence a weak scattered signal can be amplified
high above background signals of residual scatter, presenting
a dose-efficient alternative to coherent diffractive imaging
(CDI), which uses the far-field diffraction pattern i, as
input.”~!2 Furthermore, holographic image reconstruction is a
deterministic one-step process, in contrast to the iterative im-
age reconstruction in CDI algorithms,”! where central is-
sues of uniqueness, convergence, reconstruction speed, as
well as optimum choice of initial phases are yet unsolved in
a strict mathematical sense.

With increasing resolution and photon energy needed to
penetrate bulk samples, absorption contrast becomes negli-
gible and phase contrast prevails. The image formation of
holographic (projection) microscopy based on a hard x-ray
quasipoint source can be described by free-space propagation
after modulation of the spherical wave front by the
object.!>!% X-ray projection microscopy has been pioneered
both theoretically and experimentally by Wilkins and col-
laborators, who have used a scanning electron based in-
house x-ray source.'4!6 As the demand for high resolution
and shorter accumulation times becomes stronger, we present
here an in-line holography experiment based on highly effi-
cient and adaptive hard x-ray focusing by the Kirkpatrick-
Baez mirror system!” of the European Synchrotron Radiation
Facility (ESRF, Grenoble). We use a tailored lithographic test
pattern to quantitatively verify that the complex contrast
transfer function (CTF) shows the predicted oscillatory be-
havior with the so-called defocus (source-to-sample) dis-
tance. The zeros of the CTF are detected directly by contrast
reversal in the holograms of the test structure. We thus show
that image formation in experimentally relevant conditions
using a partially coherent full undulator harmonic can be
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described using the approximation of a weak phase object,
and that the oscillatory nature of the CTF must be taken into
account in holographic reconstruction.

II. PHASE CTF

Following Refs. 15 and 18 we briefly consider the wave
optical fundamentals of the contrast transfer function in the
limit of a weak phase object. From the Fresnel-Kirchhoff
equation, the wave field E,(x,,y,) in the detector plane
downstream from the object plane is determined by superpo-
sition of waves exiting from the object plane E;(x;,y,). After
transformation to Fourier space (indicated by a tilde), this
propagation reduces to a simple multiplication with the free-
space propagator h, in Fourier space EZ=EZE 1- In the
paraxial approximation, well justified for hard x-ray imaging,
the propagator is given by

ﬁz(vx, vy) = exp(ikz) exp[- iﬂ')\z(vi + vi)], (1)

where v, and v, denote the respective spatial frequencies. We
now consider a plane-wave illuminating a thin object located
in the object plane. The (complex) optical-transmission func-
tion 7(x,y) of the object is defined by the integral of the local
index of refraction n=1-6+if over the sample thickness ¢
along the axis of propagation. The real and imaginary com-
ponents of the index define the phase shift ¢(x;,y;) and the
attenuation term u(x;,y,), respectively,

(x,y) = explik(1 = (n(x,y)))1] (2)

=explikt]explip(x,y) — wm(x,y)/2], (3)

where (...), denotes the average over ¢ along the optical
path. For samples which are uniform along the propagation
axis z, the two terms are simply ¢=—kdét=p,rtN and u
=2kpt. The phase shift thus reflects the local electron density
projected along the thickness and the full 3D structure can be
reconstructed tomographically. For weak objects where ¢
and p are small compared to 1, 7 can be expanded
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FIG. 1. Contrast transfer functions for phase and amplitude ob-
jects as a function of the normalized spatial frequency VAzv.

T(x,)’) = eXP[“ﬁ(LY) - M(x,)’)/z] = 1 + l¢(xsy) - ,U«(x,)’)/z
4)

Applying Eq. (1), we find for the wave field in plane S,
further downstream in Fourier space

EZ(VJC’ Vy) = Fh"z = [5D(Vx’ Vy) + i&(vxs Vy) - Ia( Vy, Vy)/z]
Xexp(ikz)exp[— imhz(v? + Vi)], (5)

where &y denotes the Dirac delta function representing the
directly transmitted beam. To first order in ¢ and u the cor-
responding intensity /=|E,|? is given in Fourier space by

1(v,, vy) = Op(vy, vy) + 2¢(v,, vy)sin x — (v, v,)cos x,
(6)

with y=m\z(v2+ Vi). sin y and cos y in this equation are
termed the phase and amplitude CTFs and are plotted in Fig.
1 as a function of the spatial frequency v. Thus, the CTF acts
as a linear filter to the object transmission function. Directly
behind the object (z=0), the intensity distribution shows pure
and maximum amplitude contrast and phase contrast is zero.
With increasing z, amplitude contrast decreases and phase
contrast increases, as long as y = /2. At spatial frequencies
and defocus distances, for which the approximation sin y
=~ x holds, the intensity behind a pure phase object is given
byIS

1( v vy) = Op(u,v) + 277)\z(v)2( + Vi) H(v,, vy). (7)

Accordingly, intensity in real space is proportional to the
two-dimensional Laplacian Vi of the phase shift and to the
distance z

) =1- 392 gley) ®)
a

This equation, valid under the above assumption sin =y,
shows that in this imaging regime the x-ray wavelength is a
simple prefactor which determines the magnitude of the in-
tensity variations. Note, that since ¢\, the prefactor is pro-
portional to N2, when the intensity contrast is written in terms
of electron density rather than phase shift. High monochro-
maticity is not required in this regime and a broad bandwidth
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FIG. 2. (a) Micrograph of the lithographic test sample. (b) Setup
of in-line holography.

may be used. With further increase in z, the absolute value as
well as the sign of the image contrast varies rapidly with the
spatial frequency and the x-ray wavelength, and comparably
high monochromaticity is required. Since the image of an
object typically contains a range of spatial frequencies, large
features (corresponding to small spatial frequencies) may be
in the direct-contrast regime, while small features (corre-
sponding to high spatial frequencies) are already in the ho-
lographic regime.

A well-defined test structure with controlled increase in
spatial frequencies from the outer to the inner regions is
given by the well-known Siemens star design, see Fig. 2. Let
us now turn to the projection geometry used here. The par-
allel beam propagation considered above can be mapped to a
projection geometry of a divergent beam emitted from a
point source.'>!” Given a distance z; between source and
sample and z, between sample and detector, the same for-
malism as above can be applied if after a simple variable
transformation (for the detailed calculation see Ref. 19), with
the effective defocus (propagation) distance given by z
=712,/ (2, +2,). At the same time the hologram is magnified
corresponding to the geometrical projection by a factor of
M=(z+z)/z.

III. EXPERIMENT

The experiment was performed at the ID22NI undulator
beamline at the third generation synchrotron facility ESRF,
Grenoble. Two undulators were used simultaneously working
at the second and fifth harmonic, respectively. The radiation
was used in the so-called pink mode (no crystal monochro-
mators) at a photon energy of E=17.5 keV, using the intrin-
sic monochromaticity of the undulators and the bandpass of
the multilayer Kirkpatrick-Baez (KB) mirror system result-
ing in about AN/XA=0.02. In addition, a flat horizontally de-
flecting Pd-coated Si mirror was used at 0.15° incidence
angle for higher harmonics rejection. The focus of the KB
mirrors was characterized by translation of a Au stripe on the
test pattern, recording both the transmitted intensity by a
diode and the Au L, fluorescence by a silicon drift detector
(Vortex-EX, SII NanoTechnology Inc.). The measured focal
spot size was Dy,.,=160 nm [full width at half maximum
(FWHM)] in the vertical and D,.;=146 nm (FWHM) in the
horizontal direction, respectively. This high demagnification
of the source was possible by closing the high power slits
located at about 36 m upstream from the end station horizon-
tally to create a virtual source of 10 wm. The total intensity
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FIG. 3. (Color) (a) Hologram (projection image) recorded at z;=15 mm after division by the empty beam. Circles indicate the radii
where the CTF is zero. (b) The position of the circles was determined from evaluating the rms deviation of the intensity values from the
mean for each pixel radius from the center. The cusps indicate the positions of the circles. The source-to-sample distance z; is then scanned,
changing field of view and the positions of the CTF minima. For illustration, holograms recorded at (c) z;=15 mm (star centered), (d) z;
=5 mm, and (e) z;=3 mm are shown to illustrate the effect of varied defocus z. The images were divided by the empty beam. Grey scale

is scales in the interval [0,2] for (a), (d), and (e) and [0.7,1.3] for (c).

in the focal spot was on the order of 10" cps, depending on
the ring current and the slit settings in front of the KB. A
lithographic Au pattern was used as a test object (Siemens
star) with a structure height of 180 nm, outer radius R
=15 um, and finest feature size of 50 nm, deposited on a
100-120-nm-thick Si;N, membrane (calibration pattern
X50-30-2m, X-radia Inc., California). At the photon energy
of E=17.5 keV the transmission of the 180 nm Au structure
is 0.963 corresponding to w1/2==0.019, and the phase shift is
¢=0.164. Therefore the test structure is essentially a pure
phase object at the experimental energy. A fast readout low-
noise charge coupled device detector (FReLoN, ESRF) was
used to image the in-line hologram at a distance z, from the
sample, which in turn was positioned at varied distance z;
behind the KB focus. The FreLoN camera records the scin-
tillation light emitted from a scintillator foil after passing a
magnifying optical system resulting in an effective pixel size
of 0.96 um.

Figure 3 shows a hologram of the Siemens star recorded
at a distance z;=15 mm (nominal value) and z,=538 mm.
The characteristic pattern consists of radial stripes inter-
sected by rings on which the radial modulation of intensity is
suppressed. These rings correspond to the spatial frequencies
of zero contrast transfer, which shift systematically with z; or
correspondingly with the so-called defocus distance z, see
Figs. 3(c)-3(e). Along a radial line the contrast is inverted as

the rings are crossed, in line with the predicted oscillatory
nature of the CTF, see Fig. 1. The minima positions of the
CTF were determined in a semiautomated manner by plot-
ting the rms deviation of intensity I,(R)=({I*)—(I)*)*3, av-
eraged for each R over the polar angle, as a function of R,
see Fig. 3(b). In many holograms, the center position (X,.,Y,)
of the Siemens star was first determined visually, followed
by an iterative procedure of determining I,(R) for several
possible center coordinates to identify the strongest modula-
tion in /.

The spatial frequencies v, of zero contrast transfer corre-
spond to the inverse periodicity (lines and spaces) for the
given radius. They were calculated according to v,
=r,/(R48) for each hologram from the pixel values of the
radii r,, given the radius R of the star and the number of
stripes N,=48. Figure 4 shows the relative increase of the
first-order spatial frequency v, for the defocusing series nor-
malized to the value of the reference position z;=15 at the
beginning of the scan. The inset shows the sequence of or-
ders for constant z;=15 mm. Both dependencies confirm the
predicted relation v,=vn/(\z). Absolute values of v, can be
determined for z;=15 mm, where the rim of the star is dis-
cernible in the hologram and also agree within errors. Along
with the data points of the defocusing series, the function
VZmax/Z is plotted (solid line) with z,,,=15 mm the largest
defocus distance of the image series. The defocus is calcu-
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FIG. 4. Spatial frequency of zero contrast for the first order
obtained from the radii in the holograms where the contrast under-
goes an inversion, normalized to the position at the start of the scan
along with the predicted curve z7°. The insert shows the \n scaling
of the first four orders determined from Fig. 3.

lated according to z=z,z,/(z,+2,) after allowing for an offset
(zi—zp) in the nominal and the true focus position. The one
parameter fit yields zp=0.59 mm and a least-squares devia-
tion of x*=0.16 indicating that the errors from the rms analy-
sis have actually been overestimated. The offset of the focus
with respect to the nominal value was later confirmed by
holographic reconstruction (see below). A fit to the different
orders (insert) according to an® yields an exponent of b
=0.48 =0.02 with Xzz 1.08, while a fixed exponent b=0.5 is
almost equally well supported (y>=1.16).

IV. RESULTS AND CONCLUSIONS
A. Implications for holographic reconstruction

Which implications does the oscillatory CTF have for ho-
lographic reconstruction? Obviously the spatial frequencies,
for which the CTF is zero, are not properly transmitted and
the reconstruction will lack the corresponding Fourier com-
ponents. Figure 5 illustrates this point by showing a one-step
holographic reconstruction by Fresnel-Kirchhoff back propa-
gation of the hologram shown Fig. 3. The corresponding
rings in real space show blurring and/or artifacts. Recon-
struction from several well-chosen defocus distances is a
remedy well known from parallel beam phase-contrast
imaging.”’ Instead of moving the sample, the use of two
detectors, e.g., one based on a semitransparent scintillator
foil would allow to record two defocus distances
simultaneously.?! The fact that the focus is not a true point
focus and that the focusing by KB mirrors and relatively
wide opened slits in front of the KB is not coherent does not
lead to any observable distortions on the spatial length scales
larger than the focal diameter. To improve the resolution by
an order of magnitude, coherent filtering by placing x-ray
waveguides in the focal position of the KB is a promising yet
technically challenging approach.> Note that KB focusing
and x-ray waveguide optics are both essentially nondisper-
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FIG. 5. One-step holographic reconstruction by Fresnel-
Kirchhoff back propagation of the hologram shown Fig. 3. By iden-
tification of the void stripes in the center with the lithographic de-
sign (see Fig. 2), one recognizes contrast transfer down to about
200-100 nm, as expected. However, reconstruction from one holo-
gram alone introduces artifacts at those spatial frequencies which
are not transferred; see the blurred outer rings.

sive, so that broad bandpass (pink beam) experiments be-
come possible. Furthermore, coherent focusing and recon-
struction schemes taking into account the phase fronts of the
empty beam beyond the point source approximation may
lead to an increased resolution. The use of support con-
straints and corresponding reconstruction algorithms, which
are well established in coherent diffractive imaging, can be
combined with holographic reconstruction,?? and applied to
the current imaging scheme.

B. Validity of the weak phase shift approximation

The experimental results indicate that broad bandpass
(pink beam) focused undulator radiation can be used for ho-
lographic imaging and that the phase shift of a multi (17.5)
keV photon beam induced by a “typical” nanoscale object
justifies the weak phase object approximation in the sense
that the predicted and measured behavior of the CFT agrees
quantitatively for the test pattern used.

Applications of this holographic method can be found to
be either in the domain of solid-state physics and materials
science or in the biomolecular and biomedical sciences. In
the first case the validity of the weak phase approximation
must be checked for each sample system while the case for
imaging of biological cells and tissues can be briefly esti-
mated here. Considering the linear absorption coefficient
from the x-ray optical constants?* and elemental composition
of biological tissue,>* one recognizes the dominant effect of
C and O disregarding mineralized tissue. The absorption of
the light elements can easily be interpolated for plotting con-
venience, and one realizes that biological tissues up to a
thickness of r=1 mm absorb less than 10% at 17.5 keV.
Neglecting absorption in image formation is even better jus-
tified, since the density variations of internal structures to be
resolved are expected to be smaller than the average density.
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From the contrast between water and protein, a value around
10% seems reasonable. Likewise, for hydrated or embedded
samples, only the internal density variations with respect to
the average (water) density are important for image forma-
tion. If these amplitudes are again estimated to be 10% of the
water density, the phase shift of 50 wm tissue is about 0.17
for 17.5 keV. Thus, reasonable biological samples for nano-
scale imaging are essentially always phase objects at the
given energy, but not always weak phase objects. However,
for studies of thin slices and single cells, the weak phase
object approximation is very well justified.

C. Coherence requirements

Finally, we consider the affordable bandpass and coher-
ence for such experiments. Assuming for the sake of simplic-
ity a Gaussian near-field distribution in the focal plane z=0
given by I/ly=exp(-r*/2r}), with a (1/\e)-radius rg, or
equivalently D=2r, the source diameter. Following from
the well-known Gaussian beam propagation formula®
the intensity distribution at z; has a waist r(z))
=rgV1+(\z))%/(4mr)% In the far field z;>4mr/\, the
beam divergence (1/ve) half angle is #=\/(47r,). Thus the
full beam diameter L=26z, is equal to the spatial coherence
length &, =\z,/(mD), for a source of diameter D (and arbi-
trary coherence properties), observed at a distance z,.> In
other words, as expected for a diffraction limited beam, the
diffracted beam is fully coherent for any practical z;
>47Tr(2)/ N, which is not a restrictive condition for projection
propagation imaging, even if the focusing scheme itself is
not fully coherent (as is the case here).

The spectral bandpass, which determines the longitudinal
coherence &=\%/AN\, is another issue. In Eq. (8), we al-
ready saw that \z enters as a prefactor in the regime sin y
= X. thus for small defocus z; <[\ (v;+;)]™". Here, high
bandpass can be tolerated without spoiling the image. How-
ever, the corresponding small value of z; also implies small
beam diameter at the sample L=26z,=\z,/(7D), and hence
small field of view. As z; is increased, the oscillatory nature
of CTF comes into effect with a decreasing spacing between
minima and maxima. According to Eq. (1), the two ends of a
wavelength interval AN will fall onto a maximum and a
minimum of the CTF, respectively, if AN=[z,(v2+ Vi)]_l,
thus cancelling the contrast. Therefore the bandpass must be
sufficiently small (AN/N) = [)\zl(v)zﬁ v%)]‘l, to avoid a
smearing of the intensity fringes in the hologram. Expanding
with @D, and using the relation for the beam size at the
sample L=\z,/(7D) in small angle approximation, we get
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AN 1
S S _— .
N 7wDL( Vi + V§)2

)

The above condition is most restrictive for the high spatial
frequencies indicating a loss of resolution if the bandpass is
too large. Since one should aim a resolution close to the
source size D, we can demand v=1/D, and hence the maxi-
mum tolerable bandpass becomes

Ar = 2 (10)

A L
The intensity optimized bandpass without compromising the
resolution is thus given by the ratio between field of view
and the resolution element, or stated differently, by the num-
ber of pixels in the object plane when the field of view is to
be sampled at the resolution D. The prefactor 7 follows from
the definition used above, based on the (1/ve) width of the
Gaussian beam, and would of course be different for other
functions and/or width definitions. Therefore, large defocus
distances z; with correspondingly larger field of views, ne-
cessitate higher monochromaticity than small z;. For broad
bandpass, lateral raster scan at small z; is a suitable way to
increase the effective field of view. For illustration, we have
included a movie of scanning the test structure through the
beam (supplemental material, online).?

D. Summary

In summary, we have shown that the image formation and
object reconstruction using multi-keV pink beam undulator
radiation can be modeled within the approximation of weak
phase objects for many relevant nanoscopic samples. The
oscillatory nature of the CTF itself must be taken into ac-
count in holographic and/or iterative object reconstruction.
From the results presented here, we can validate the scheme
of “photon-rich” broad bandpass focusing by highly efficient
mirror system for quantitative holographic projection mi-
croscopy. Despite the incoherent (or partially coherent) fo-
cusing, phase contrast is obtained for length scales larger
than the focal spot. With the given photon flux in the focused
beam, accumulations in the millisecond range become fea-
sible. This opens the route for fast holographic tomography,
providing quantitative bulk (3D) density maps of functional
materials and biomolecular samples after fixation.
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